Notes for Final Exam

Math 250:B1, Summer 2003

Rotation Matrices:
\[A_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]

Matrix Algebra:
\[(AB)^T = B^T A^T \]
\[A(c_1 u_1 + c_2 u_2) = c_1 A u_1 + c_2 A u_2 \]
\[(AB)^{-1} = B^{-1} A^{-1} \]
\[(A^T)^{-1} = (A^{-1})^T \]

Algorithm to find \(A^{-1} \): \([A \ I \] \xrightarrow{\text{rref}} [I \ A^{-1}]\).

If an augmented matrix \([A \ b]\) contains a row where the only nonzero entry is in the last column, then \(Ax = b \) is inconsistent.

The rank of \(A \) is the number of nonzero rows in the rref of \(A \). The nullity of \(A_{m \times n} \) is \(n - \text{rank } A \).

\(Ax = b \) is consistent if and only if \(b \in \text{span}\{a_1, a_2, \ldots, a_n\} \).

<table>
<thead>
<tr>
<th>\text{rank of } A_{m \times n}</th>
<th>\text{number of sols to } Ax = b</th>
<th>\text{columns of } A</th>
<th>\text{rref of } A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>at least one for every (b \in \mathbb{R}^m)</td>
<td>spanning set for (\mathbb{R}^m)</td>
<td>every row contains a pivot position</td>
</tr>
<tr>
<td>(n)</td>
<td>at most one for every (b \in \mathbb{R}^m)</td>
<td>linearly independent</td>
<td>every column contains a pivot position</td>
</tr>
</tbody>
</table>

Performing an elementary row operation on \(A \) is the same as multiplying \(A \) by the corresponding elementary matrix \(E \).

If \(R \) is the rref of \(A_{m \times n} \), then there exists an invertible matrix \(P_{m \times m} \) such that \(PA = R \).

Linear Correspondence Property: Any linear relationship of the columns of \(A \) also applies to the columns of rref \(A \), and vice versa.

\(A_{n \times n} \) is invertible if and only if rref of \(A \) is \(I_{n \times n} \).

If \(A \) can be put into ref form without using row swaps, then \(A \) can be written as \(LU \), where \(L \) is a unit lower triangular matrix, and \(U \) is an upper triangular matrix. If \(U = E_k \cdots E_2 E_1 A \), then \(L = E_1^{-1} E_2^{-1} \cdots E_k^{-1} \).

\(A_{n \times n} \) is invertible if and only if \(\det A \neq 0 \).

\[\det(AB) = (\det A)(\det B) \]

Subspace from \(A_{n \times n} \)

<table>
<thead>
<tr>
<th>Col A</th>
<th>rank A</th>
<th>pivot columns of A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row A</td>
<td>rank A</td>
<td>nonzero rows of rref of A</td>
</tr>
<tr>
<td>Null A</td>
<td>nullity A</td>
<td>vectors in parametric solution of (Ax = 0)</td>
</tr>
</tbody>
</table>

\(\lambda \) is an eigenvalue of \(A_{n \times n} \) if there is a nonzero vector \(v \) such that \(Av = \lambda v \).

The characteristic polynomial of \(A \) is \(\det(A - \lambda I) \).

The dimension of the eigenspace corresponding to an eigenvalue \(\lambda \) is at most the multiplicity of \(\lambda \).

\(A_{n \times n} \) is diagonalizable if there exists a basis for \(\mathbb{R}^n \) consisting of eigenvectors of \(A \). Then \(A = PDP^{-1} \), where \(P \) has the eigenvectors as columns and \(D \) is a diagonal matrix with the corresponding eigenvalues along the diagonal.

Quadratic Formula: If \(at^2 + bt + c = 0 \), then \(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). If \(b^2 - 4ac < 0 \), then the roots of the polynomial are complex.

A Markov chain with a finite number of states is regular if it is possible when starting from some state \(x \) to eventually move to any other state. A sufficient condition for the Markov chain to be regular is that the transition matrix has no zero entries. If \(A \) is the transition matrix for a regular Markov chain, then \(1 \) is an eigenvalue of \(A \) and there is a unique probability vector \(p \) that is also an eigenvector corresponding to \(1 \). The limit of \(A^n v \) as \(n \to \infty \) and for any probability vector \(v \) is \(p \).

Let \(B \) be a matrix whose columns form a basis \(B \) for \(\mathbb{R}^n \). Then for every vector \(v \in \mathbb{R}^n \), \(B[v]_B = v \), and since \(B \) is invertible, \([v]_B = B^{-1} v \).
\[\mathbf{u} \cdot \mathbf{u} = ||\mathbf{u}||^2 \]

Pythagorean Theorem: \(||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 \) if and only if \(\mathbf{u} \) and \(\mathbf{v} \) in \(\mathbb{R}^n \) are orthogonal.

Orthogonal Projection of \(\mathbf{v} \) onto \(\text{span}\{\mathbf{u}\} \): \(\frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^2} \mathbf{u} \)

Gram-Schmidt Orthogonalization: Start with a linearly independent set \(S = \{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \subseteq \mathbb{R}^n \). Then \(S' = \{\mathbf{v}_1, \ldots, \mathbf{v}_k\} \) is an orthogonal set where \(\text{span} \ S' = \text{span} \ S \).

\[
\begin{align*}
\mathbf{v}_1 &= \mathbf{u}_1 \\
\mathbf{v}_2 &= \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1 \\
& \quad \vdots \\
\mathbf{v}_k &= \mathbf{u}_k - \frac{\mathbf{u}_k \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \cdots - \frac{\mathbf{u}_k \cdot \mathbf{v}_{k-1}}{||\mathbf{v}_{k-1}||^2} \mathbf{v}_{k-1}
\end{align*}
\]

The orthogonal complement \(S^\perp \) is the set of all vectors in \(\mathbb{R}^n \) that are orthogonal to each vector in a nonempty set \(S \subseteq \mathbb{R}^n \).

Closest Vector Property: The closest vector in a subspace \(W \subseteq \mathbb{R}^n \) to \(\mathbf{v} \) is the orthogonal projection of \(\mathbf{v} \) onto \(W \).

Method of Least Squares: To find the line \(y = a_0 + a_1 x \) that best fits the data, let

\[
\begin{bmatrix}
1 \\
1 \\
\vdots \\
1
\end{bmatrix}
=
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix},
\quad
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}
\]

Let \(C = [\mathbf{v}_1 \mathbf{v}_2] \). Then

\[
\begin{bmatrix}
a_0 \\
a_1
\end{bmatrix} = (C^T C)^{-1} C^T y
\]

The orthogonal projection matrix \(P_W \) can be found by computing \(C(C^T C)^{-1} C^T \), where the columns of \(C \) are a basis for the subspace \(W \).

\(A_{n \times n} \) is symmetric if and only if \(A = PDP^{-1} \), where \(P \) is orthogonal and \(D \) is diagonal.

Spectral Decomposition of a Symmetric Matrix: Let \(\{\mathbf{u}_1, \ldots, \mathbf{u}_n\} \) be an orthonormal basis for \(\mathbb{R}^n \) consisting of eigenvectors of a symmetric matrix \(A \). Let \(\lambda_1, \ldots, \lambda_n \) be the corresponding eigenvalues. Then

\[
A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \cdots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T.
\]

\[2 \]