Notes for Final Exam

	Matrix Algebra:
Rotation Matrices:	$(AB)^T = B^T A^T$
$A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	$A(c_1\mathbf{u}_1 + c_2\mathbf{u}_2) = c_1A\mathbf{u}_1 + c_2A\mathbf{u}_2$
$\sin\theta = \left[\sin\theta - \cos\theta \right]$	$(AB)^{-1} = B^{-1}A^{-1}$
	$(A^T)^{-1} = (A^{-1})^T$

Algorithm to find A^{-1} : $[A \ I] \xrightarrow{\text{rref}} [I \ A^{-1}]$.

If an augmented matrix $[A \mathbf{b}]$ contains a row where the only nonzero entry is in the last column, then $A\mathbf{x} = \mathbf{b}$ is inconsistent.

The rank of A is the number of nonzero rows in the rref of A. The nullity of $A_{m \times n}$ is $n - \operatorname{rank} A$.

 $A\mathbf{x} = \mathbf{b}$ is consistent if and only if $\mathbf{b} \in \operatorname{span}\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$.

rank of $A_{m \times n}$	number of sols to $A\mathbf{x} = \mathbf{b}$	columns of A	rref of A
m	at least one for every $\mathbf{b} \in \mathbb{R}^m$	spanning set for \mathbb{R}^m	every row contains a pivot position
n	at most one for every $\mathbf{b} \in \mathbb{R}^m$	linearly independent	every column contains a pivot position

Performing an elementary row operation on A is the same as multiplying A by the corresponding elementary matrix E.

If R is the rref of $A_{m \times n}$, then there exists an invertible matrix $P_{m \times m}$ such that PA = R.

Linear Correspondence Property: Any linear relationship of the columns of A also applies to the columns of rref A, and vice versa.

 $A_{n \times n}$ is invertible if and only if rref of A is $I_{n \times n}$.

If A can be put into ref form without using row swaps, then A can be written as LU, where L is a unit lower triangular matrix, and U is an upper triangular matrix. If $U = E_k \cdots E_2 E_1 A$, then $L = E_1^{-1} E_2^{-1} \cdots E_k^{-1}$.

 $A_{n \times n}$ is invertible if and only if det $A \neq 0$.

 $\det(AB) = (\det A)(\det B)$

subspace from $A_{n \times n}$	dimension	basis
$\operatorname{Col} A$	$\operatorname{rank} A$	pivot columns of A
Row A	$\operatorname{rank} A$	nonzero rows of rref of A
Null A	nullity A	vectors in parametric solution of $A\mathbf{x} = 0$

 λ is an eigenvalue of $A_{n \times n}$ if there is a nonzero vector **v** such that A**v** = λ **v**.

The characteristic polynomial of A is det(A - tI).

The dimension of the eigenspace corresponding to an eigenvalue λ is at most the multiplicity of λ .

 $A_{n \times n}$ is diagonalizable if there exists a basis for \mathbb{R}^n consisting of eigenvectors of A. Then $A = PDP^{-1}$, where P has the eigenvectors as columns and D is a diagonal matrix with the corresponding eigenvalues along the diagonal.

Quadratic Formula: If $at^2 + bt + c = 0$, then $t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. If $b^2 - 4ac < 0$, then the roots of the polynomial are complex.

A Markov chain with a finite number of states is regular if it is possible when starting from some state x to eventually move to any other state. A sufficient condition for the Markov chain to be regular is that the transition matrix has no zero entries. If A is the transition matrix for a regular Markov chain, then 1 is an eigenvalue of Aand there is a unique probability vector \mathbf{p} that is also an eigenvector corresponding to 1. The limit of $A^m \mathbf{v}$ as $m \to \infty$ and for any probability vector \mathbf{v} is \mathbf{p} .

Let B be a matrix whose columns form a basis \mathcal{B} for \mathbb{R}^n . Then for every vector $\mathbf{v} \in \mathbb{R}^n$, $B[\mathbf{v}]_{\mathcal{B}} = \mathbf{v}$, and since B is invertible, $[\mathbf{v}]_{\mathcal{B}} = B^{-1}\mathbf{v}$.

Notes for Final Exam page 2

$\mathbf{u} \cdot \mathbf{u} = ||\mathbf{u}||^2$

Pythagorean Theorem: $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$ if and only if \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal.

Orthogonal Projection of $\mathbf v$ onto $\operatorname{span}\{\mathbf u\}\colon \, \frac{\mathbf v\cdot \mathbf u}{||\mathbf u||^2}\mathbf u$

Gram-Schmidt Orthogonalization: Start with a linearly independent set $S = {\mathbf{u}_1, \ldots, \mathbf{u}_k} \subseteq \mathbb{R}^n$. Then $S' = {\mathbf{v}_1, \ldots, \mathbf{v}_k}$ is an orthogonal set where span S' = span S.

$$\mathbf{v}_1 = \mathbf{u}_1$$

$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1$$

$$\vdots$$

$$\mathbf{v}_k = \mathbf{u}_k - \frac{\mathbf{u}_k \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \dots - \frac{\mathbf{u}_k \cdot \mathbf{v}_{k-1}}{||\mathbf{v}_{k-1}||^2} \mathbf{v}_{k-1}$$

The orthogonal complement S^{\perp} is the set of all vectors in \mathbb{R}^n that are orthogonal to each vector in a nonempty set $S \subseteq \mathbb{R}^n$.

Closest Vector Property: The closest vector in a subspace $W \subseteq \mathbb{R}^n$ to **v** is the orthogonal projection of **v** onto W. Method of Least Squares: To find the line $y = a_0 + a_1 x$ that best fits the data, let

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix} \qquad \mathbf{v}_{2} = \begin{bmatrix} x_{1}\\x_{2}\\\vdots\\x_{n} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_{1}\\y_{2}\\\vdots\\y_{n} \end{bmatrix}$$

Let $C = [\mathbf{v}_1 \ \mathbf{v}_2]$. Then

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = (C^T C)^{-1} C^T \mathbf{y}$$

The orthogonal projection matrix P_W can be found by computing $C(C^T C)^{-1} C^T$, where the columns of C are a basis for the subspace W.

 $A_{n \times n}$ is symmetric if and only if $A = PDP^{-1}$, where P is orthogonal and D is diagonal.

Spectral Decomposition of a Symmetric Matrix: Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of a symmetric matrix A. Let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues. Then

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$